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Abstract

The engineering goals of this project were to create a mobile robotic system capable of 

automated obstacle avoidance and realtime object recognition. Specifically, the robot should be 

able to construct a visual model of an object from a set of training images, detect and identify 

said object within a realtime environment, and navigate safely to the object's position. Several 

different algorithms, such as Simultaneous Localization and Mapping (SLAM), Point-Line 

Iterative Corresponding Point (PLICP), Speeded-Up Robust Features (SURF), and linear 

triangulation were used in order to create and iteratively refine a working prototype of the robot. 

The robot's navigation capabilities were tested by timing the robot as it planned and followed a 

path to five predefined goals around the lab area, and its object recognition capabilities were 

tested by requesting the robot to identify several types of items in five different images. The 

project is not currently complete, but the robot has at least partially met all of its engineering 

goals; it is able to consistently and efficiently identify, locate, and navigate to a given object after 

viewing images of it. This is in stark contrast to the first iteration of the system's first iteration, 

where none of the goal points were reached due to map corruption.
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Machine Vision: Navigation and Object Recognition in a Mobile Robot

For the past half century, mankind has envisioned a future built on the foundations of 

robotics, and one of the most fundamental areas in this quickly expanding field has been machine 

vision. The central task of a machine vision system is twofold: first, it receives a description of 

the sensory world, and second, it attempts to interpret and describe the world's properties 

algorithmically (Szeliski, 2010). Machine vision has applications in a variety of fields, from 

medical imaging to space exploration; if realtime robot navigation and vision could be carried 

out accurately, then many tasks which currently require human supervision could be automated 

by robots instead. (Palmisano, n.d).

The end goal of this project is to create a machine vision system capable of automated 

obstacle avoidance and realtime object recognition. Specifically, the robot should be able to 

construct a visual model of an object from a set of training images, detect and identify said object 

within a realtime environment, and navigate to the object's position. The robot's setup is 

relatively limited – its only sensors are a two-dimensional laser scanner and a grayscale 768p 

camera, and it lacks the three-dimensional mapping, infrared sensors, high camera resolution, 

and processing power of higher-end robot projects. However, despite these restrictions, 

significant advancements have been made in the robot's capabilities.

In order to successfully navigate and avoid obstacles in realtime, a robot must have 

accurate knowledge of where it is relative to the world around it; it must use the data received 

from its sensors to continuously update an estimate of its position. This process is known as 

robot odometry. A common approach is to detect changes in the robot's wheel motors and use 

these to determine its velocity over time; however, this method is imprecise and can lead to large 

inaccuracies as the robot moves further from its starting point (Anderson, 2010). Any error in 
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odometry also leads to errors in environment mapping; these can stack up and essentially corrupt 

the robot's map, making navigation impossible.

A more stable and accurate approach to position estimation is provided by an algorithm 

known as Point-Line Iterative Corresponding Point (PLICP.) PLICP is a general algorithm to 

find a transformation minimizing the distance between two sets of data points. Using PLICP, the 

translation and rotation between subsequent sets of the robot's laser scan data can be found in 

realtime (Censi, 2008). This results in many small changes of the robot's position and angle 

being computed quickly and iteratively, creating a much more accurate odometry estimate than 

that of the wheel motors. The implementation of the PLICP algorithm is provided by the Robot 

Operating System (ROS), an advanced open-source software framework which aids in the 

development of robotic applications (“ROS wiki,” 2011).

Figure 1: PLICP algorithm finding a near-optimal transformation between the red and blue data 

sets in 7 iterations (Censi, 2008).

Once it has obtained an accurate position estimate, the robot uses an algorithm known as 

Simultaneous Localization And Mapping (SLAM) to create and update a map of its 

surroundings. SLAM is defined as “the problem of building a map while at the same time 
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localizing the robot within that map,” and these two goals are deeply dependent on each other; 

the robot needs to know its own location in order to build an accurate map from laser scans, but 

at the same time a map is also extremely helpful in adjusting the robot's position (Stachniss, 

Frese, & Grisetti, 2011). The specific SLAM variant used is GMapping, a sophisticated approach 

which provides an extremely accurate estimation of the robot's surroundings based on the robot's 

current odometry, past positions, and laser scan data received over time. GMapping uses a 

technique known as particle filtering to compute probabilities and sequentially improve its map 

estimate, adapting over time in order to increase speed and keep computational requirements as 

low as possible (Grisetti, Stachniss, & Burgard, 2006). The implementation of the GMapping 

algorithm used in this project is provided by the ROS codebase as well.

Figure 2. Sample GMapping output of a cluttered lab area. Light gray areas indicate unoccupied 

space, black areas indicate occupied space, and dark gray areas indicate unexplored space.

Another helpful feature ROS provides is a path planner which can calculate a route 

between any two positions on the map. An ROS path is stored as a simple sequence of positions 

(“nav_msgs/Path documentation”, 2012), and the robot can follow this planned path easily just 

by navigating in a straight line from one given position to the next. This also means that paths 

can easily be recalculated at any time; if the robot strays too far off or encounters an obstacle in 
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its way then it can simply request a new path and change course immediately. This results in a 

dynamic system which can navigate to any preset goal.

However, a truly autonomous robot acts without human input; the ideal is that there is no 

need for preset goals at all. In other words, the robot should be able to explore its environment 

and fill gaps in its knowledge without any human guidance. This can be accomplished using a 

relatively simple but efficient technique known as frontier-based exploration. Boundaries on the 

map between unoccupied space and unknown space are detected, and large boundary areas are 

marked as high priority “frontiers” for the robot to visit (Yamauchi, 1997). Once the robot 

reaches a frontier area, it performs a 360 degree sweep with the laser scanner and adds the 

information to its map. (If the robot finds that it has no way of navigating to a particular frontier, 

then the space is simply marked as occupied.) This results in an effective navigation and 

exploration system which constantly searches out and integrates new information about the 

world into its knowledge base without any need for external input – the robot is not only able to 

map its environment but also use that map to explore it.

The current approach to object recognition involves a two-step process of image filtering 

followed by feature detection and matching. First, a bilateral filter is applied to the image in 

order to reduce noise and only retain the most relevant features possible (Fisher, 2011). Then, 

simple contrast adjustments are made in order to make the image's features appear stronger.

Feature detection and matching are carried out using a popular algorithm known as 

Speeded-Up Robust Features (SURF.) SURF is designed to find distinctive feature points within 

an image that do not vary with scale or rotation (corners and edges, for example), and it uses 

these points to compute robust sets of feature descriptors that can be matched with relative ease 

(Bay, Ess, Tuytelaars, & Gool, 2008). The Erratic robot can use SURF to find an object within an 
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image by comparing the object's feature descriptors to the image's descriptors; the accuracy of 

this match depends on the certainty of the matches and the total number of points found.

Figure 3. Sample SURF feature matching. Blue lines indicate match points, and the magenta 

rectangle indicates the approximate rectangular region of the object within the image.

After an object has been identified using SURF and its identity has been verified over 

several different frames, there still remains the matter of locating the object's position in 3D 

space. This is where linear triangulation and camera geometry come in. The fundamental concept 

is that any given camera has a 3x4 projection matrix P, containing both intrinsic parameters such 

as focal length or center point and extrinsic parameters such as camera translation or rotation, 

which relates the projected 2D point x and the real 3D point X in the following manner: (Hartley 

& Zissermann, 2004)

x = PX

Using basic cross product rules, this equation becomes x X (PX) = 0. Evaluating the cross 

product yields the following 3 equations, where Pi indicates row i of the projection matrix P:

y(P3X) – P2X = 0
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P1X – x(P3X) = 0

x(P2X) – y(P1X) = 0

These can be rewritten as:

X(yP3 – P2) = 0

X(xP2 – P1) = 0

X(xP2 – yP1) = 0

Combining the top two equations for both points yields a 4x4 matrix A, which can be used in the 

equation AX = 0 to solve for X. This is the basic linear triangulation method; though more 

advanced ones exist, it is still fairly effective for most scenarios.

Materials and Methods

The materials needed for this project are a Videre Erratic-brand mobile robot with a 768p 

grayscale camera and a Hokuyo URG-04LX-UG01 laser scanner attached. In addition, the 

project requires a working computer (preferably running Ubuntu Linux) with the following 

software fully installed and configured:

– OpenCV 2.3.1 (used for image processing and object recognition)

– Boost 1.48 (used by OpenCV)

– Robot Operating System (ROS), ver. Electric (used for robot navigation and 

interfacing – not needed if running object recognition system in simulation)
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Figure 4. Map of testing process for the robot's navigation system. Red circles indicate 

predefined goal points, blue circle indicates start point.

The robot's navigation system was tested as follows:

1. A map of the lab area was created, either by driving the robot around manually or 

letting it explore autonomously.

2. The robot was instructed to find and follow a path to several predefined goals 

around the lab area.

3. The robot's behavior was observed and recorded.

4. Steps 2 and 3 were repeated for several trials.

5. Based on the observations recorded, adjustments and changes were made to the 

robot's codebase.

The robot's object recognition system was tested as follows, within a simulation mode (almost no 

experimental testing has been done within the real lab setting as of this point:)

1. Photo images were downloaded from the 2009 Semantic Robot Vision Challenge 
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database (DeMenthon & Rybski, n.d). 5 images were picked out, each 

corresponding to one of the following five objects: Goldfish crackers, bag of Lays 

potato chips, “I Am A Strange Loop” book by Douglas Hofstader, “Photoshop in a 

Nutshell” book, pumpkin.

2. For each object, a training image was found on the Internet manually.

3. The robot was given the task of detecting whether each object was visible within 

its corresponding image, and drawing a rectangle around the object (if detected.)

4. The robot's accuracy in identifying the object was recorded, as well as the quality 

of the rectangle it drew. Quality was separated into three categories: “good,” 

“okay,” and “bad” where a good rectangle covers over 75% of the object, an okay 

rectangle covers 75% or less of it, and a bad rectangle covers 25% or less.

5. Step 3 was repeated for 3 trials.

6. Based on the observations recorded, adjustments and changes were made to the 

robot's codebase.

Figure 5. The 5 images used for testing the robot's object recognition capabilities. One item to 

identify per image. From top-left to bottom-right: Goldfish crackers, bag of Lays potato chips, I  
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Am A Strange Loop book, Photoshop in a Nutshell book, pumpkin.

Results

Table 1

Erratic Robot's Navigation System over Several Iterations

Trial Iteration Point 1 Point 2 Point 3 Point 4 Point 5
Trial 1 Iteration 1

(original)
Off track; 

map 
corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption
Iteration 2
(PLICP)

Off track; 
path drift

Off track; 
path drift

Off track; 
path drift

Off track; 
path drift

Reached 
goal in 1:47

Iteration 3
(path f.)

Reached 
goal in 0:43

Reached 
goal in 0:34

Reached 
goal in 0:49

Reached 
goal in 0:48

Reached 
goal in 0:21

Trial 2 Iteration 1
(original)

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption
Iteration 2
(PLICP)

Off track; 
path drift

Reached 
goal in 2:11

Off track; 
path drift

Off track; 
path drift

Reached 
goal in 1:20

Iteration 3
(path f.)

Reached 
goal in 0:41

Reached 
goal in 0:31

Reached 
goal in 0:52

Reached 
goal in 0:41

Reached 
goal in 0:26

Trial 3 Iteration 1
(original)

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption

Off track; 
map 

corruption
Iteration 2
(PLICP)

Off track; 
path drift

Off track; 
path drift

Off track; 
path drift

Off track; 
path drift

Reached 
goal in 2:31

Iteration 3
(path f.)

Reached 
goal in 0:38

Reached 
goal in 0:48

Reached 
goal in 0:44

Reached 
goal in 0:46

Reached 
goal in 0:28

Table 2

Erratic Robot's Machine Vision System over Several Iterations

Trial Iteration Goldfish 
crackers

Lays chips 
bag

“Strange 
Loop” book

“Nutshell” 
book

Pumpkin

Trial 1 Iteration 1
(original)

Recognized;
bad rect

Not 
recognized

Recognized;
okay rect

Recognized;
good rect

Not 
recognized
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Iteration 2
(filtering)

Recognized;
good rect

Recognized; 
bad rect

Recognized;
okay rect

Recognized;
good rect

Not 
recognized

Trial 2 Iteration 1
(original)

Recognized;
bad rect

Not 
recognized

Recognized;
okay rect

Recognized;
okay rect

Not 
recognized

Iteration 2
(filtering)

Recognized;
good rect

Recognized; 
bad rect

Recognized;
good rect

Recognized;
good rect

Not 
recognized

Trial 3 Iteration 1
(original)

Recognized;
bad rect

Not 
recognized

Recognized;
okay rect

Recognized;
okay rect

Not 
recognized

Iteration 2
(filtering)

Recognized;
good rect

Recognized; 
bad rect

Recognized;
good rect

Recognized;
okay rect

Not 
recognized

Discussion

During the first two iterations of the robot navigation system, many of the trials failed 

due to corrupted map data and path drift. The former problem was due to inaccurate robot 

odometry – as the robot moved around, the error between its estimated position and its actual one 

increased greatly over time. This resulted in map corruption, rendering the robot unable to 

navigate properly – it did not reach any of the preset goals within the first iteration of the 

navigation system. This disappeared completely once the PLICP algorithm was introduced. The 

path drift within the next iteration was due to the default ROS path follower not controlling the 

Erratic robot properly; this resulted in the robot either not reaching its goal at all or taking an 

extremely roundabout and inefficient way to its goal. This was solved by writing original path 

following code, containing failsafes so that the robot would automatically recalculate its 

trajectory if it detected that it was too far off the path (or if it encountered an obstacle in the 

middle of its path.) At this point, the robot's navigation capabilities improved dramatically, and it 

was able to get to all of the given preset goals in a reasonable amount of time (less than a minute 

for every goal.) There may still be some room for improvement regarding path optimization, but 

this is currently lower priority.
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Between the first two iterations of the image recognition system, the robot showed the 

most improvement in recognizing the Goldfish crackers (from a “bad” rectangle to a “good” 

rectangle.) The system also showed some minor improvement in recognizing the “Photoshop in a 

Nutshell” and “I Am A Strange Loop” books. The least improvement was seen with the pumpkin 

and the Lays potato chips; the former was not recognized even once in either the first or second 

iteration of the system, and the latter was only identified with a “bad” rectangle at most.

The two books and the Goldfish crackers bag were probably recognized relatively easily 

due to their concentration of interesting feature points, as well as their lack of a noisy 

background. For example, both books have detailed designs on their cover (including fairly large 

serif text), and the Goldfish bag has many changes in regional color intensity (e.g. the borders 

between the orange and white areas, as well as the “Goldfish” font.) In contrast, the only detailed 

design on the Lays bag is the logo itself (a relatively small portion of the whole object), and the 

noisy patterns on the room's floor serve as a large distractor to the feature detection algorithm.

Part of the failure to recognize the pumpkin may also be attributed to the room's noisy 

floor designs (which are even more prominent in its image than in the Lays image), but it also 

points to a larger problem with the image recognition system – it only works with specific 

objects, not general categories. That is, asking the system to recognize a specific book or brand 

logo will generally yield positive results, but asking it to recognize a general class of object (such 

as a “pumpkin” or a “laptop”) will not. This is because the training set for each object is 

currently extremely narrow; only one image is being used to train the robot, which is not nearly 

enough to create a generalized visual model of an object class.

This is one area where further advancements for this project lie; an general object model 

could be constructed by clustering together common features from many individual training 
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images. If done correctly, this would not only lead to improvements in the general case but also 

the specific one, since the object recognition system would have an even more nuanced set of 

features. Another important further advancement would be connecting the navigation and object 

recognition systems together, so the robot is able to determine the position of an object and 

navigate to it once it identifies one. Yet another future goal would be to fully automate the robot's 

training; instead of using carefully human-selected training images, the robot could search and 

filter images from the Internet on its own without any external assistance. Finally, if speed 

considerations allow it, a mixed approach could be applied to the object recognition; in addition 

to SURF, other types of object detection algorithms could be used in order to provide verification 

and narrow down possible locations for the object.
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